Post-Selection Inference with R

Amit Meir

May 28, 2018

Department of Statistics, The University of Washington

- Motivation: The Lasso
- A Crash Course in Post-Selection Inference
- Software Packages

Code Example

Conclusion

Motivation: The Lasso

The Lasso

The Lasso is a regularized regression/model selection method,

$$\hat{\beta}_{lasso} = \arg\min_{\beta} \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

- The ℓ_1 penalty induces sparsity (sets many coefficients to zero).
- · Has many good properties.
 - · Consistent for the true model under some conditions.
 - Consistent in ℓ_2 norm $\|\hat{\beta}_{lasso} \beta\|_2^2 \to^{\mathsf{P}} 0$ under mild conditions.
 - Computationally efficient!
- · Very widely used!

3

The Lasso: Statistical Problems

- 1. Statistical significance?
- 2. Confidence intervals?
- 3. Efficient estimation?

The Lasso: Statistical Problems

- 1. Statistical significance?
- 2. Confidence intervals?
- 3. Efficient estimation?

Whats wrong with the gaussian confidence intervals?

$$(\hat{\beta}_j - \sigma_j z_{1-\alpha/2}, \hat{\beta}_j + \sigma_j z_{1-\alpha/2})$$

4

Coverage Rate after Model Selection

 The fact that we selected a model based on the data invalidated our confidence intervals

Coverage Rate after Model Selection

- The fact that we selected a model based on the data invalidated our confidence intervals
- But we can adjust for selection to get valid confidence intervals!

Estimation Error after Model Selection

$$\frac{1}{|\mathsf{M}|} \sum_{j \in \mathsf{M}} \mathsf{log}_2 (\hat{\beta}_j - \beta_j)^2 - \mathsf{log}_2 (\hat{\beta}_j^{\mathsf{lasso}} - \beta_j)^2$$

A Crash Course in Post-Selection

Inference

Conditional Inference: Estimation with Testing

Suppose that $y \sim N(\mu, 1)$ and estimate μ only if:

$$|y_i| \geq c > 0\,$$

Conditional Inference: Estimation with Testing

Suppose that $y \sim N(\mu, 1)$ and estimate μ only if:

$$|y_i| \geq c > 0\,$$

If 0 $<\mu<$ c we will always overestimate μ if we use the standard MLE, y itself.

The Post-Selection Distribution

We assumed a distribution $y \sim N(\mu, 1)$. But If we only observe |y| > c the actual observed distribution is a **Truncated Normal**.

The Univariate Conditional MLE

• The standard MLE maximizes a misspecified Likelihood.

The Univariate Conditional MLE

- The standard MLE maximizes a misspecified Likelihood.
- The correct likelihood is that of a truncated normal distribution:

$$L(\mu|\{|\mathbf{y}|>c) = \frac{\varphi(\mathbf{y};\mu,1)}{\mathsf{P}(|\mathbf{y}|>c)}\mathsf{I}\{|\mathbf{y}|>c\}$$

The Univariate Conditional MLE

- The standard MLE maximizes a misspecified Likelihood.
- The correct likelihood is that of a truncated normal distribution:

$$L(\mu | \{ |y| > c) = \frac{\varphi(y; \mu, 1)}{P(|y| > c)} I\{ |y| > c \}$$

 We can obtain a correct MLE by maximizing the conditional likelihood:

$$\hat{\mu} = \arg\max_{\mu} \mathrm{L}(\mu | \{ |\mathbf{y}| > \mathbf{c} \})$$

We can also compute CIs based on the conditional likelihood.

Conditional estimates are adaptive shrinkage estimators:

- Apply shrinkage when observed value is close to the threshold.
- Report 'naive' estimates when observed values are far away from the threshold.

Software Packages

Available Software Packages

- **selectiveInference:** Post-selection inference based on the Polyhedral Lemma (Tibshiriani et al.).
- selectiveMLE: Computation of the conditional MLE for the Lasso
 - + CIs based on a quadratic approximation (AM).

!!Work in progress!! Overhaul planned:

- · More reliable/faster sampler.
- · CIs based on a modified bootstrap procedure.
- PSAT: Post-selection inference following aggregate testing based on the Polyhedral Lemma and other more efficient methods (AM & Ruth Heller).

Comparison of Post-Selection Inference Methods

Comparison of Post-Selection Inference Methods

Code Example

Loading Dependencies

```
# devtools::install_github("ammeir2/selectiveMLE")
library(selectiveInference)
library(selectiveMLE)
library(gaplot2)
library(magrittr)
library(dplyr)
library(reshape2)
generate_sqrt_Sigma <- function(p, rho, sigsq = 1) {</pre>
generate_regression_pata <- function(n, sqrtSigma, numberNonzero,</pre>
                            snr = 2, ysiq = 1) {
```

Generating Data

```
# Parameters -----
n <- 400
n <- 400
p <- 400
snrFta <- 0.5
numberNonzero <- 4
rho <- 0.5
# Generatina Data -----
set.seed(123)
Xsqrtsig <- generate_sqrt_Sigma(p, rho, sigsg = 1)$sqrt</pre>
s <- 0
while(s < 2 \mid s > n / 4) {
  regData <- generate_regression_data(n, Xsqrtsig, numberNonzero, snr = snr, ysiq = 1)</pre>
  X <- regData$X[1:n, ]
  X \leftarrow apply(X, 2, function(x) (x - mean(x)) / sd(x))
  obsMu <- regData$mu[1:n]
  vsia <- sart(var(obsMu) / snrEta)</pre>
  y \leftarrow rnorm(n, mean = obsMu, sd = ysiq)
  y \leftarrow y - mean(y)
  vsd \leftarrow sd(v)
  v \leftarrow v / vsd
  lassoFit <- cv.qlmnet(X, y, standardize = FALSE, intercept = FALSE)</pre>
  lambda <- n * lassoFit$lambda.min
  lassoBeta <- as.vector(coef(lassoFit, s = lambda / n))[-1]</pre>
  selected <- lassoBeta != 0
  s <- sum(selected)</pre>
  yoracle <- regData$mu[1:n] + rnorm(n, sd = ysig)</pre>
  yoracle <- yoracle / ysd
```

SelectiveInference Package: Running Analysis

SelectiveInference Package: Output

Standard deviation of noise (specified or estimated) sigma = 0.835

Testing results at lambda = 30.776, with alpha = 0.050

Var	Coef	Z-score	P-value	LowConfPt	UpConfPt	LowTailArea	UpTailArea
10	-0.144	-3.348	0.624	-0.202	1.053	0.024	0.025
20	-0.080	-1.874	0.312	-0.687	0.393	0.025	0.025
24	-0.040	-0.920	0.793	-0.108	0.937	0.025	0.025
97	0.111	2.556	0.092	-0.110	0.875	0.025	0.025
105	0.044	0.859	0.964	-Inf	0.099	0.000	0.025
106	0.057	1.101	0.078	-0.367	Inf	0.000	0.000
118	0.093	2.151	0.507	-0.613	0.399	0.025	0.025
134	0.106	2.361	0.655	-0.924	0.179	0.025	0.025
136	0.090	1.705	0.031	-0.011	1.336	0.025	0.025
137	0.085	1.678	0.462	-0.400	0.241	0.025	0.025
154	0.119	2.753	0.200	-0.164	0.202	0.025	0.024
169	-0.412	-7.848	0.000	-0.795	-0.274	0.025	0.024
170	-0.065	-1.228	0.617	-0.225	0.624	0.025	0.025
192	-0.073	-1.706	0.355	-0.264	0.283	0.025	0.000
211	0.112	2.586	0.333	-0.304	0.304	0.025	0.025
235	0.133	3.076	0.129	-0.111	0.226	0.025	0.025
256	0.108	2.504	0.100	-0.077	0.363	0.025	0.025
277	-0.053	-1.240	0.637	-0.201	0.577	0.025	0.025
304	-0.078	-1.807	0.581	-1.234	1.931	0.025	0.025

selectiveMLE: Function Call

selectiveMLE: Function Call

selectiveMLE: Results

```
> mle$conditionalBeta[1:5] %>% round(3)
[1] -0.142 -0.017 -0.007 0.075 0.000
> exact$conditionalBeta[1:5] %>% round(3)
[1] -0.135 -0.012 -0.008 0.095 0.000
> exact$lassoBeta[1:5] %>% round(3)
[1] -0.062 -0.014 -0.007 0.029 0.001
> mle$wald_CI[1:5, ]
           Γ.17
                       Γ.27
[1,] -0.2347781 -0.02925365
[2,] -0.1310234 0.18836851
[3,] -0.1257605 0.16920867
[4,] -0.1078374 0.18816108
Γ5.7 -0.2308295 0.20955257
```

selectiveMLE: Diagnostics

selectiveMLE: Diagnostics

Conclusion

Conclusion

- 1. Model selection invalidates standard inferential methods!
- Solutions now exist which allow for model selection and inference to be conducted on the same dataset (with no data splitting).
- 3. **selectiveInference:** Is a great, easy to use software package.
- selectiveMLE: Maximum likelihood estimation, and more efficient CIs - Soon¹

¹or at least, by the time the revision on the paper is due

Conclusion

- 1. Model selection invalidates standard inferential methods!
- Solutions now exist which allow for model selection and inference to be conducted on the same dataset (with no data splitting).
- 3. **selectiveInference:** Is a great, easy to use software package.
- selectiveMLE: Maximum likelihood estimation, and more efficient CIs - Soon¹

Thank You! Questions?

¹or at least, by the time the revision on the paper is due

References

Benjamini, Yoav, and Amit Meir. "Selective Correlations-the conditional estimators." arXiv preprint arXiv:1412.3242 (2014).

Meir, Amit, and Mathias Drton. "Tractable Post-Selection Maximum Likelihood Inference of the Lasso." arXiv preprint arXiv:1705.09417 (2017).

Heller, Ruth, Amit Meir, and Nilanjan Chatterjee. "Post-selection estimation and testing following aggregated association tests." arXiv preprint arXiv:1711.00497 (2017)

Lee, J. D., Sun, D. L., Sun, T., and Taylor, J. E. (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics., 44(3):907-927