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Motivation: The Lasso



The Lasso

The Lasso is a regularized regression/model selection method,

β̂lasso = argmin
β

1
2n‖y− Xβ‖22 + λ‖β‖1

• The `1 penalty induces sparsity (sets many coefficients to zero).

• Has many good properties.
• Consistent for the true model under some conditions.

• Consistent in `2 norm ‖β̂lasso − β‖22 →P 0 under mild conditions.

• Computationally efficient!

• Very widely used!
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The Lasso: Statistical Problems

1. Statistical significance?

2. Confidence intervals?

3. Efficient estimation?

Whats wrong with the gaussian confidence intervals?

(β̂j − σjz1−α/2, β̂j + σjz1−α/2)
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Coverage Rate after Model Selection
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• The fact that we selected a model based on the data
invalidated our confidence intervals

• But we can adjust for selection to get valid confidence intervals!
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Estimation Error after Model Selection
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log2(β̂j − βj)
2 − log2(β̂lassoj − βj)
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A Crash Course in Post-Selection
Inference



Conditional Inference: Estimation with Testing

Suppose that y ∼ N(µ, 1) and estimate µ only if:

|yi| ≥ c > 0

If 0 < µ < c we will always overestimate µ if we use the standard
MLE, y itself.
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The Post-Selection Distribution

We assumed a distribution y ∼ N(µ, 1). But If we only observe |y| > c
the actual observed distribution is a Truncated Normal.
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The Univariate Conditional MLE

• The standard MLE maximizes a misspecified Likelihood.

• The correct likelihood is that of a truncated normal
distribution:

L(µ|{|y| > c) = ϕ(y;µ, 1)
P(|y| > c) I{|y| > c}

• We can obtain a correct MLE by maximizing the conditional
likelihood:

µ̂ = argmax
µ

L(µ|{|y| > c})

We can also compute CIs based on the conditional likelihood.
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Conditional estimates are adaptive shrinkage estimators:

• Apply shrinkage when observed value is close to the threshold.
• Report ‘naive’ estimates when observed values are far away
from the threshold.
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Software Packages



Available Software Packages

• selectiveInference: Post-selection inference based on the
Polyhedral Lemma (Tibshiriani et al.).

• selectiveMLE: Computation of the conditional MLE for the Lasso
+ CIs based on a quadratic approximation (AM).
!!Work in progress!! Overhaul planned:

• More reliable/faster sampler.
• CIs based on a modified bootstrap procedure.

• PSAT: Post-selection inference following aggregate testing
based on the Polyhedral Lemma and other more efficient
methods (AM & Ruth Heller).
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Comparison of Post-Selection Inference Methods
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Comparison of Post-Selection Inference Methods
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Code Example



Loading Dependencies
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Generating Data
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SelectiveInference Package: Running Analysis
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SelectiveInference Package: Output
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selectiveMLE: Function Call
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selectiveMLE: Function Call
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selectiveMLE: Results
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selectiveMLE: Diagnostics
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selectiveMLE: Diagnostics
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Conclusion



Conclusion

1. Model selection invalidates standard inferential methods!

2. Solutions now exist which allow for model selection and
inference to be conducted on the same dataset (with no data
splitting).

3. selectiveInference: Is a great, easy to use software package.

4. selectiveMLE: Maximum likelihood estimation, and more
efficient CIs - Soon1

Thank You! Questions?

1or at least, by the time the revision on the paper is due
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