

Social Network Analysis With igraph & R

Ofrit Lesser

ofrit.lesser@gmail.com

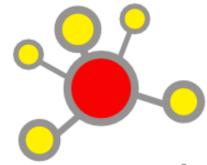
December 11th, 2014

Outline

- The igraph R package
- Basic graph concepts
- What can you do with igraph?
 - Construction
 - Attributes
 - Centrality measure
 - Community detection
 - Plotting, and more...

The igraph software package

- igraph An open source library for the analysis of large networks.
- Free for academic and commercial use (GPL).
- State of the art data structures and algorithms, works well with large graphs.
- Core functionality is implemented as a C library.
- Can be programmed in GNU R, Python and C/C++.
- For details & documentation see <u>http://igraph.org/</u>



Scalability - How LARGE?

- Well, it depends what you want to calculate.
- For graph creation and manipulation, it is enough if it fits into the memory.

- igraph (typically) needs 32 bytes per edge and 16 bytes per vertex.
- A graph with one million vertices and ten million edges needs about 320 Mbytes.

Installation

• <u>http://igraph.org/r/</u>

Installation

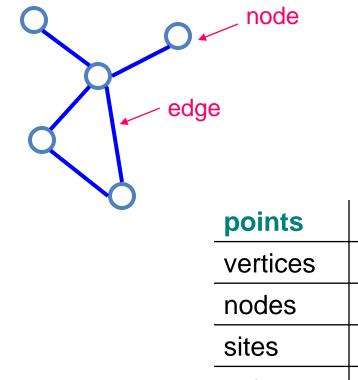
igraph is on CRAN and can be installed from within R:

```
## Download and install the package
install.packages("igraph")
```

Load package
library(igraph)

What are networks?

• Networks are sets of nodes connected by edges.



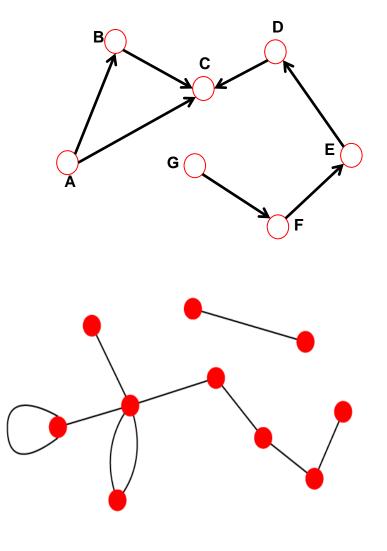
"Network" ≡ "Graph"

points	lines	
vertices	edges, arcs	math
nodes	edges, links	computer science
sites	bonds	physics
actors	ties, relations	sociology

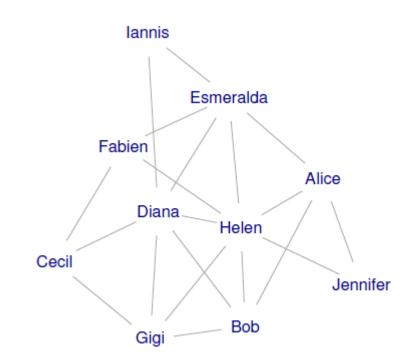
Network elements: edges

- Directed links (edges)
 URLs on the www
 - phone calls
 - metabolic reactions

- Undirected links (edges – Co-authorship links
 - Actor network
 - protein interactions



• There is no best format for network data, everything depends on what kind of questions one wants to ask.



• Edge list. Readable, but not too efficient.

Alice	Bob
Bob	Diana
Cecil	Diana
Alice	Esmeralda
Diana	Esmeralda
Cecil	Fabien
Esmeralda	Fabien
Bob	Gigi
Cecil	Gigi
Diana	Gigi
Alice	Helen
Bob	Helen
Diana	Helen
Esmeralda	Helen
Fabien	Helen
Gigi	Helen
Diana	lannis
Esmeralda	lannis
Alice	Jennifer
Helen	Jennifer

- Adjacency matrix
- Good for questions like: is 'Alice' connected to 'Bob'?

	Alice	Bob	Cecil	Diana	Esmeralda	Fabien	Gigi	Helen	lannis	Jennifer
Alice	0	1	0	0	1	0	0	1	0	1
Bob	1	0	0	1	0	0	1	1	0	0
Cecil	0	0	0	1	0	1	1	0	0	0
Diana	0	1	1	0	1	0	1	1	1	0
Esmeralda	1	0	0	1	0	1	0	1	1	0
Fabien	0	0	1	0	1	0	0	1	0	0
Gigi	0	1	1	1	0	0	0	1	0	0
Helen	1	1	0	1	1	1	1	0	0	1
lannis	0	0	0	1	1	0	0	0	0	0
Jennifer	1	0	0	0	0	0	0	1	0	0

• Adjacency lists. quickly retrieve all neighbors for a node.

Alice	Bob, Esmeralda, Helen, Jennifer
Bob	Alice, Diana, Gigi, Helen
Cecil	Diana, Fabien, Gigi
Diana	Bob, Cecil, Esmeralda, Gigi, Helen, Iannis
Esmeralda	Alice, Diana, Fabien, Helen, Iannis
Fabien	Cecil, Esmeralda, Helen
Gigi	Bob, Cecil, Diana, Helen
Helen	Alice, Bob, Diana, Esmeralda, Fabien, Gigi, Jennifer
lannis	Diana, Esmeralda
Jennifer	Alice, Helen

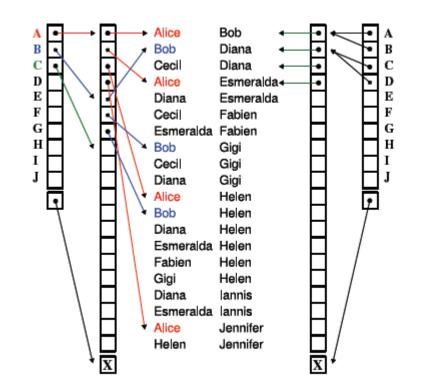
Graph representation - igraph

- Flat data structures, indexed edge lists.
- Easy to handle, good for large sparse graphs.

Alice Bob Bob Diana Ceci Diana Alice Esmeralda Diana Esmeralda Cecil Fabien Esmeralda Fabien Gigi Bob Ceci Gigi Gigi Diana Alice Helen Bob Helen Helen Diana Esmeralda Helen Fabien Helen Gigi Helen Diana lannis Esmeralda lannis Alice Jennifer Helen Jennifer

Graph representation - igraph

- Flat data structures, indexed edge lists.
- Easy to handle, good for many kind of questions.



Vertex and edge ids

• Vertices are numbered from 1 to |V| (used to be 0 to |V|-1).

V = {A,B,C,D,E} E = ((A,B), (A,C), (B,C), (C,E)). A = 1,B = 2,C = 3,D = 4,E = 5.

 $g \leftarrow graph(c(1,2, 1,3, 2,3, 3,5), n=5)$

g

IGRAPH D--- 5 4 --

str(g)

IGRAPH D--- 5 4 -## + edges:
[1] 1->2 1->3 2->3 3->5

Creating igraph graphs

- igraph objects
- summary(), is.igraph()

is.igraph(g)

[1] TRUE

summary(g)

IGRAPH D--- 5 4 --

igraph graphs operations

• Basic manipulations

is.directed(g)
[1] TRUE
vcount(g)
[1] 5
ecount(g)
[1] 4

Vertex and edge sequences

• Vertex and edge sequences and iterators

```
V(g)

## Vertex sequence:
## [1] 1 2 3 4 5

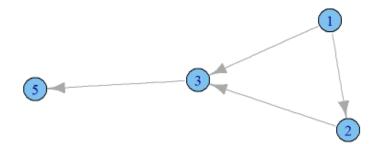
E(g)

## Edge sequence:
##
## [1] 1 -> 2
## [2] 1 -> 3
## [3] 2 -> 3
## [4] 3 -> 5
```

Visualizing graphs

g <- graph(c(1,2, 1,3, 2,3, 3,5), n=5)

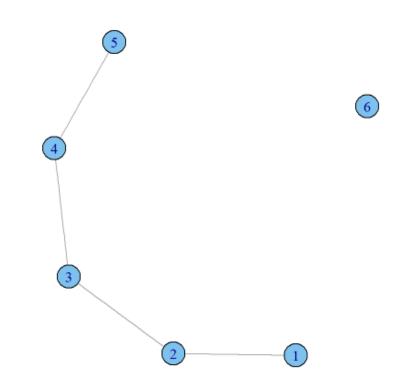
plot(g)



(4)

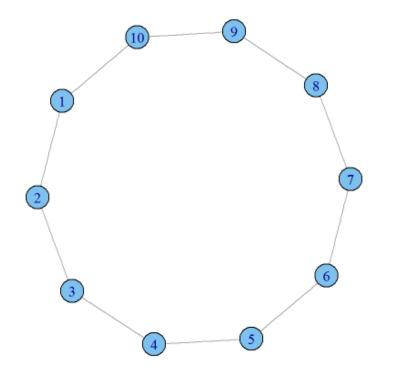
Other graph types - undirected

g_nd <- graph(c(1,2, 2,3, 3,4, 4,5), n=6, directed=FALSE)
plot(g_nd)</pre>



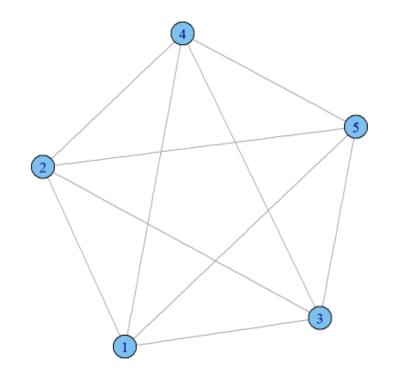
Ring graph

g_r <- graph.ring(10)
plot(g_r)</pre>



Complete graph

g_f <- graph.full(5)
plot(g_f)</pre>



Visualization layouts

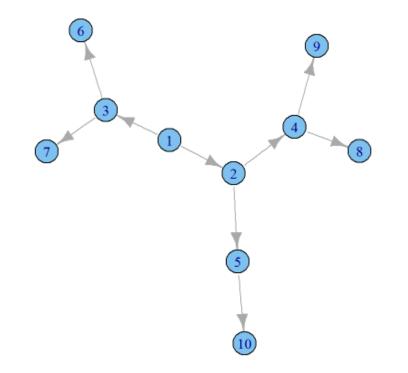
• Possible to force directed layouts. Examples:

plot(g, layout=layout.fruchterman.reingold)
plot(g, layout=layout.graphopt)
plot(g, layout=layout.kamada.kawai)

 More on drawing graphs, see: <u>http://igraph.org/r/doc/plot.common.html</u>

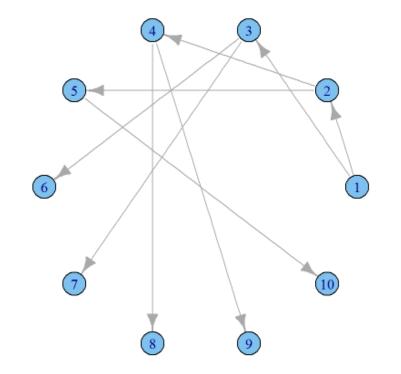
Tree graph

g_t <- graph.tree(10, 2)
plot(g_t)</pre>

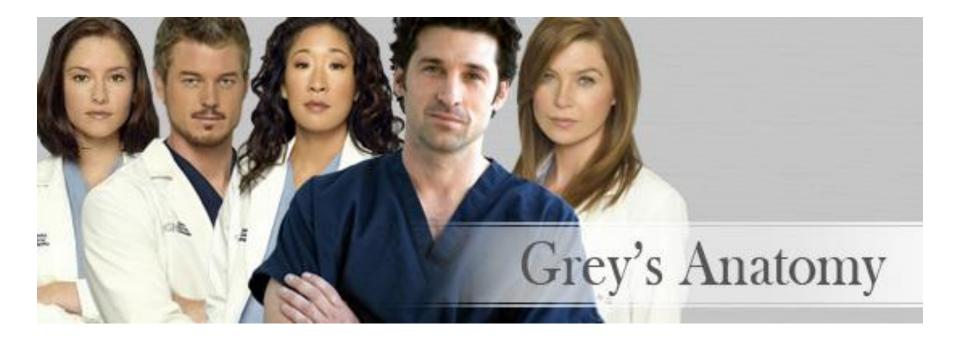


Tree graph with circular layout

plot(g_t, layout=layout.circle)



Grey's Anatomy Network of Romance Example



Inspired by the post "Grey's Anatomy Network of Sexual Relations", by Gary Weissman. Available online at <u>http://www.babelgraph.org/wp/?p=1</u>

Create Grey's Anatomy Network

• Creating graphs using graph.data.frame()

```
library(igraph)
ga.data <- read.csv('ga_edgelist.csv', header=TRUE)
head(ga.data)</pre>
```

##		from	to
##	1	lexi	sloan
##	2	lexi	karev
##	3	owen	yang
##	4	owen	altman
##	5	sloan	torres
##	6	sloan	altman

```
g <- graph.data.frame(ga.data, directed=FALSE)
summary(g)</pre>
```

```
## IGRAPH UN-- 32 34 --
## attr: name (v/c)
```

Vertex and edge sequences

• List of nodes' names

V(g)\$name								
## ## ##	[5] [9] [13] [17] [21] [25]	"lexi" "derek" "grey" "bailey" "colin" "nancy" "thatch grey"	"owen" "karev" "chief" "izzie" "preston" "olivia" "tucker"	"sloan" "o'malley" "ellis grey" "altman" "kepner" "mrs. seabury" "hank"	"denny"			
##	[29]	"finn"	"steve"	"ben"	"avery"			

Vertex and edge sequences

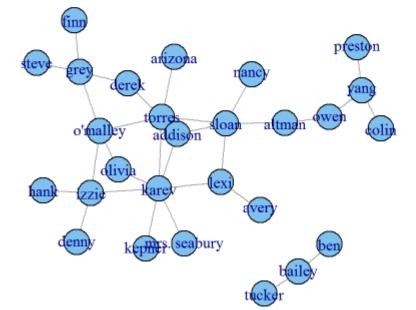
• And a list of edges...

head(E(g))

```
## Edge sequence:
##
## [1] sloan -- lexi
## [2] karev -- lexi
## [3] yang -- owen
## [4] altman -- owen
## [5] torres -- sloan
## [6] altman -- sloan
```

Choose a layout scheme and plot

g\$layout <- layout.fruchterman.reingold(g)
plot(g)</pre>



Node Degree

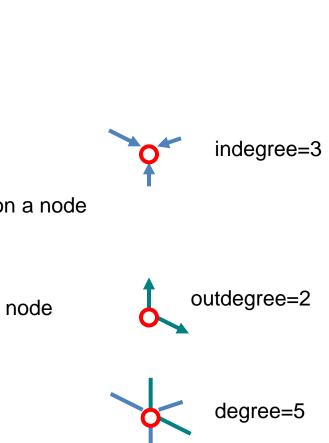
- Node network properties
 - from immediate connections
 - indegree

how many directed edges (arcs) are incident on a node

outdegree

how many directed edges (arcs) originate at a node

• degree (in or out) number of edges incident on a node



Calculate degree centrality

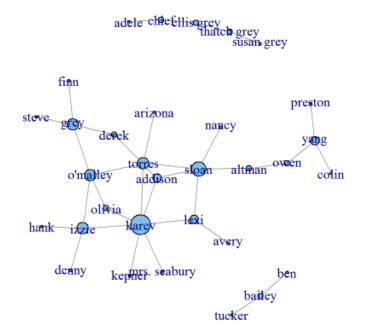
degr.score <- degree(g)</pre>

degr.score

##	lexi	owen	sloan	torres	derek	
##	3	2	5	4	2	
##	karev	o'malley	yang	grey	chief	
##	7	4	3	4	2	
##	ellis grey	susan grey	bailey	izzie	altman	
##	2	1	2	4	2	
##	arizona	colin	preston	kepner	addison	
##	1	1	1	1	3	
##	nancy	olivia	mrs. seabury	adele	thatch grey	
##	1	2	1	1	2	
##	tucker	hank	denny	finn	steve	
##	1	1	1	1	1	
##	ben	avery				
##	1	1				

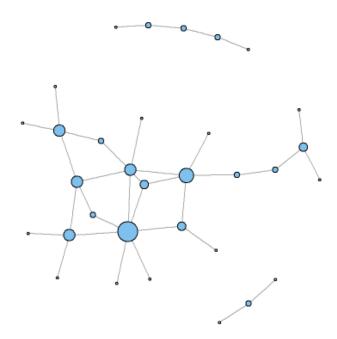
Nodes' size scales with degree

V(g)\$size <- degree(g) * 2 # multiply by 2 for scale
plot(g)</pre>



Remove nodes` labels

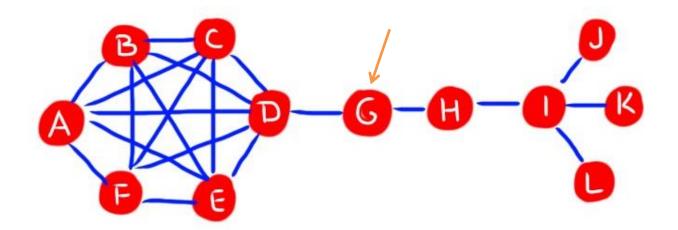
V(g)\$label <- NA # remove labels for now
plot(g)</pre>



Centrality:

importance based on network position

Degree is only part of the story...



Closeness: definition

Closeness centrality of a vertex - the inverse of the average shortest paths to/from all the other vertices in the graph.

Closeness Centrality:

$$C_c(i) = \frac{1}{\sum_{j=1}^N d(i,j)}$$

Closeness Centrality normalized:

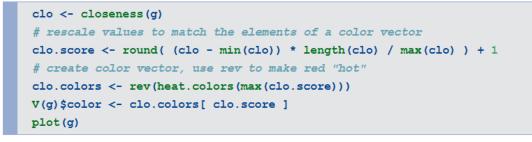
$$C_c(i) = \frac{N-1}{\sum_{j=1}^N d(i,j)}$$

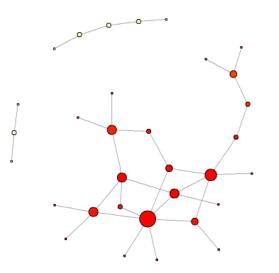
Closeness & color scheme

- Calculate closeness centrality.
- Rescale to create a color scheme to visualize the relative differences.

```
clo <- closeness(g)
# rescale values to match the elements of a color vector
clo.score <- round( (clo - min(clo)) * length(clo) / max(clo) ) + 1
# create color vector, use rev to make red "hot"
clo.colors <- rev(heat.colors(max(clo.score)))
V(g)$color <- clo.colors[ clo.score ]
plot(g)</pre>
```

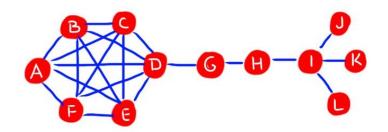
Closeness centrality





Betweeness: definition

Intuition: how many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

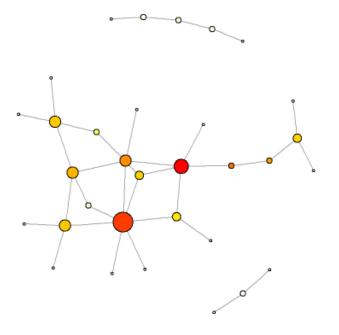


Betweeness Centrality:

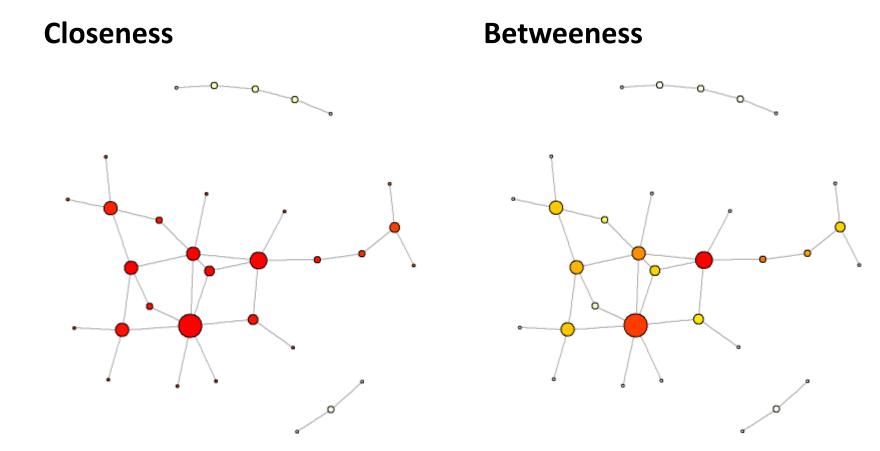
$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

Betweeness centrality

```
btw <- betweenness(g)
btw.score <- round(btw) + 1
btw.colors <- rev(heat.colors(max(btw.score)))
V(g)$color <- btw.colors[ btw.score ]
plot(g)</pre>
```

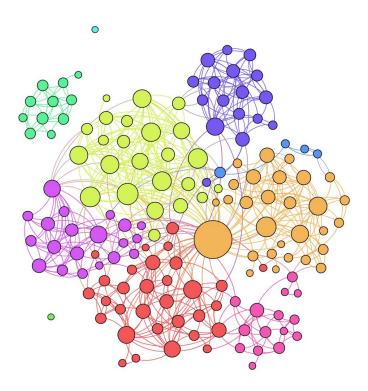


Closeness vs. betweeness



Community structure in networks

- Social networks tend to be highly clustered.
- There are several algorithms that uncover these clusters.



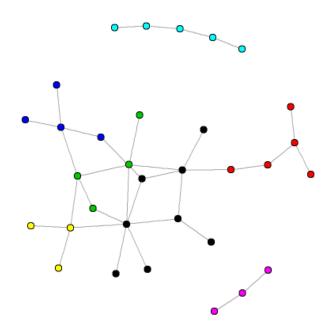
Community detection

• Here we use the implementation of the Girvan-Newman algorithm to detect the underlying community structure of the graph.

```
gnc <- edge.betweenness.community(g, directed=FALSE)
V(g)$color <- gnc$membership
V(g)$size <- 5 # Set same size to all nodes
plot(g)</pre>
```

Girvan-Newman clustering

gnc <- edge.betweenness.community(g, directed=FALSE)
V(g)\$color <- gnc\$membership
V(g)\$size <- 5 # Set same size to all nodes
plot(g)</pre>



Network elements may have attributes

- Example for node attributes:
 - geographical location
 - Ethnicity
 - musical tastes...



- Example for edge attributes:
 - weight (e.g. frequency of communication)
 - ranking (best friend, second best friend...)
 - type (friend, relative, co-worker)

Gender attribute - example

Nodes csv file

ga.vrtx <- read.csv('ga_actors.csv', header=TRUE, stringsAsFactors=FALSE)
head(ga.vrtx)</pre>

```
##
        name gender
## 1 addison
                  F
  2
      adele
                  F
##
                  F
## 3 altman
## 4 arizona
                  F
## 5
       avery
                  Μ
## 6 bailey
                  F
```

Gender attribute - example

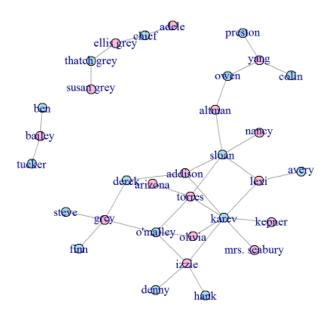
ga.data <- read.csv('ga_edgelist.csv', header=TRUE, stringsAsFactors=FALSE)
ga.vrtx <- read.csv('ga_actors.csv', header=TRUE, stringsAsFactors=FALSE)
g <- graph.data.frame(ga.data, vertices=ga.vrtx, directed=FALSE)
g</pre>

IGRAPH UN-- 32 34 -## + attr: name (v/c), gender (v/c)

V(g)\$gender

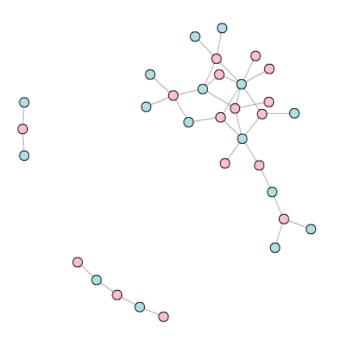
Color nodes by gender

V(g)\$size <- 7 # Set size to all nodes
V(g)\$color <- "powderblue"
females <- which(V(g)\$gender == "F")
V(g)\$color[females] <- "pink"
plot(g)</pre>



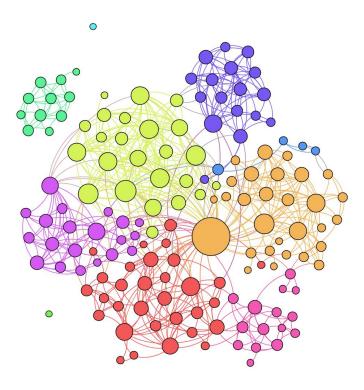
Remove labels & layout differently

V(g)\$label <- NA # remove labels for now
g\$layout <- layout.kamada.kawai(g)
plot(g)</pre>



Connected components

• Social networks tend to be connected graphs, such that almost every node is reachable from almost every other node.



Connected components

no.clusters(g)																											
## [1] 3																											
cl <- clusters(g) which.max(cl\$csize)																											
##	[1]	1																									
<pre>cl\$membership == which.max(cl\$csize)</pre>																											
## ##	[1] [12]	TR FAL		FAI	LSE RUE		RUE RUE		rrui rrui			RUE					LSE		ALS						RUI RUI		TRUE TRUE
	[23]	TR			RUE		RUE		FRUI								LSE		TRU			LS			RU		IIIOE
cl\$membership																											
##	[1]	1 2	1	1 1	L3	3 2	21	1	1 2	2 1	L 1	L 1	1	1	1	1	1 1	1	1	1	1	1	1	2	2	1	31

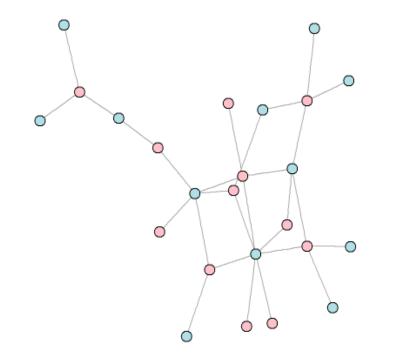
Keep only the Giant Component

```
cl <- clusters(g)
to.keep <- which(cl$membership == which.max(cl$csize))
g_gc <- induced.subgraph(g, to.keep)
summary(g gc)</pre>
```

```
## IGRAPH UN-- 24 28 --
## attr: layout (g/n), name (v/c), gender (v/c), size (v/n), color
## (v/c), label (v/1)
```

Print the giant component only

g_gc\$layout <- layout.kamada.kawai(g_gc)
plot(g_gc)</pre>



Questions?

